
This document describes the escape sequences interpreted by tmux, the ter-
minal multiplexer. These are the codes received by tmux from its controlled
pty, not the codes sent from tmux clients to their controlling ptys.

This is intended to be a fairly complete technical reference for all the codes
tmux understands or processes. It is based on reading the source code from
version 1.8 of tmux.

For those who just care about text formatting, jump to table 6.
Most of these codes are handled in input.c

Table 1: Symbols in this document

Symbol Meaning
(ǇǕǅ) The ASCII escape character. 033, 0x1b, 27
(ǄǇǎ) The ASCII Bell character. 007, 0x07, 7
(Ǖǒǅ) ASCII Space. 040, 0x20, 32
{text} Arbitrary(ish) text string. Most characters accepted.
{cmd} A single command character, typically a letter.
{N} A numeric parameter.

Table 2: Legacy Sequences

Sequence Meaning
(ǇǕǅ) (  G0 Special Graphics Mode
(ǇǕǅ) 7 Save Cursor
(ǇǕǅ) 8 Restore Cursor
(ǇǕǅ) # 8 Alignment test (fill with ‘E’)
(ǇǕǅ) = Keypad Application Mode
(ǇǕǅ) > Keypad Numeric Mode (default)
(ǇǕǅ) ( B G0 ASCII Mode
(ǇǕǅ) D Index (move cursor down, scroll if at bottom)
(ǇǕǅ) E New Line (move cursor down and to home column)
(ǇǕǅ) H Set Horizontal Tab Stop
(ǇǕǅ) M Reverse Index (move cursor up)
(ǇǕǅ) c Reset to Initial State

Table 3: APC/DSC/Etc codes

Sequence Meaning
(ǇǕǅ) _ {text} (ǇǕǅ) \ ASC: Set pty (pane) title to {text}
(ǇǕǅ) ] {text} (ǄǇǎ) OSC: See table 4 for format of {text}
(ǇǕǅ) [ {text} {cmd} CSI: See table 5 for alphabetically sorted list of commands
(ǇǕǅ) P {text} (ǇǕǅ) \ DSC: ignore {text}

1



(ǇǕǅ) X {text} (ǇǕǅ) \ SOS: ignored?TODO
(ǇǕǅ) ˆ PM ??TODO
(ǇǕǅ) k {text} (ǇǕǅ) \ rename_string??TODO

Table 4: OSC Codes

Sequence Meaning
(ǇǕǅ) ]  ; {text} (ǄǇǎ) screen_set_title?TODO
(ǇǕǅ) ] 2 ; {text} (ǄǇǎ) screen_set_title?TODO
(ǇǕǅ) ] 1 2 ; {text} (ǄǇǎ) set cursor color to {text}?TODO
(ǇǕǅ) ] 1 1 2 ; (ǄǇǎ) set cursor color to default?TODO

1 CSI Sequences
CSI starts with (ǇǕǅ) [, has an optional private extension character (<,>,or
?), followed by an optional list of semicolon separated numbers of an arbitrary
number of digits, and ends with any ASCII char between 0x40 and 0x7E, which
is almost always a letter1

The numbers are refered to as ‘parameters’. Different commands expect
different numbers of parameters. Extra parameters are ignored. Missing pa-
rameters have a default value.

Some commands have positional arguments (e.g. put cursor at X,Y has 2
positional arguments, the first is always X, the second always Y). Some com-
mands have accumulative mode arguments (e.g. SGR has bold, italic; it doesn’t
matter which order they are specified, though they are applied in the order
given and some modes replace others. For example, specifying blue,green will
set the color to blue and then green, resulting in green). Some are mixed (SGR
is typically accumulative, except for codes 38 and 48, which are extended set
parameter values which many terminals interpret as switching to positional pa-
rameter interpretation for the number of expected parameters, then return to
accumulative interpretation. See section 1.1 for how tmux handles this).

Below is a table of CSI commands that tmux understands and acts upon.

Table 5: CSI Codes

Code sym Meaning
(ǇǕǅ) [ {N} @ ICH Insert char N (TODO?)TODO
(ǇǕǅ) [ {N} A CUU cursor up N times, min 1 def 1
(ǇǕǅ) [ {N} B CUD cursor down N times, min 1 def

1

1Non letter symbols include @, [, ], \, ˆ, _, `, {, }, ˜, and |. Of these, tmux only takes
action on @.

2



(ǇǕǅ) [ {N} C CUF cursor right N times, min 1 def
1

(ǇǕǅ) [ {N} D CUB cursor left N times, min 1 def 1
(ǇǕǅ) [ {N} E CNL caraige return, cursor down N

times, min 1 def 1
(ǇǕǅ) [ {N} F CPL caraige ret, cursor up N times,

min 1 def 1
(ǇǕǅ) [ {N} G HPA set curor to column N (min 1

def 1)
(ǇǕǅ) [ {N} ; {M} H CUP cursor to N x M (min 1 def 1

for both) (N is row, M is
column)

(no I)
(ǇǕǅ) [ {N} ; {M} J ED clear based on N (min 0 def 0)

N = 0: clear to end of screen
N = 1: clear to top of screen
N = 2: clear whole screen
N = 3: clear based on M

M = 0: clear history
(LINUX console, used for
locking screen)

M = other: ignored
N = other: ignored

(ǇǕǅ) [ {N} K EL Clear based on N (min 0 def 0)
N = 0: Clear to end of line
N = 1: Clear to start of line
N = 2: Clear whole line
N = other: ignored

(ǇǕǅ) [ {N} L IL Insert line N (TODO?)TODO
(ǇǕǅ) [ {N} M DL Delete Line based on N

(TODO)TODO
(no N)
(no O)
(ǇǕǅ) [ {N} P DCH Delete based on N

(TODO)TODO
(no Q)
(no R)
(no S)
(no T)
(no U)
(no V)
(no W)
(ǇǕǅ) [ {N} X ECH clear based on N

(TODO)TODO
(no Y)

3



(ǇǕǅ) [ {N} Z CBT cursor back tab N times, min
1, default 1

(no a)
(no b)
<ESC> [  c DA reply <ESC> [ ? 1 ; 2 c
<ESC> [ other c ignoreTODO
<ESC> [ >  c DA_TWO reply <ESC> [ > 0 ; 9 5 ; 0 c
<ESC> [ > other c ignoreTODO
(ǇǕǅ) [ d VPA
(no e)
(ǇǕǅ) [ f CUP
(ǇǕǅ) [ g TBC
(ǇǕǅ) [ {N} h SM n min 0 def -1

N = 4: (IRM) Mode set
(INSERT)
N = other: ignored

(ǇǕǅ) [ ? {N} h SM_PRIVATE n min 0 def -1
N = 1: (GATM) Mode set
KCURSOR
N = 3: (DECCOLM) cursor
move to 0,0; clear scrn
N = 7: (DECAWM) mode set
wrap
N = 25: (TCEM) mode set
cursor
N = 1000: mode clear
ALL_MOUSE, mode set
MOUSE STANDARD
N = 1002: clear
ALL_MOUSE, set
MOUSE_BUTTON
N = 1003: clear
ALL_MOUSE, set
MOUSE_ANY
N = 1004: FOCUSON?
(TODO)TODO[OTHERS:
TODO]TODO

(no i)
(no j)
(no k)
(ǇǕǅ) [ {N} l RM n min 0 def -1

N = 4: (IRM) Mode clear
(MODE_INSERT)
N = other: ignored

4



(ǇǕǅ) [ ? {N} l RM_PRIVATE n min 0 def -1
N = 1: (GATM) Mode clear
(MODE_KCURSOR)
N = 3: (DECCOLM) cursor
move to 0,0; clear screen
N = 7: (DECAWM) Mode
clear (MODE_WRAP)
N = 25: (TCEM) Mode clear
(MODE_CURSOR)
N = 1000-1003: Mode clear
(ALL_MOUSE_MODES)
N = 1004: Mode clear
(FOCUSON)
N = 1005: Mode clear (Mouse
UTF8)
N = 1006: Mode clear
MOUSE_SGR
N = 47 or 1047: alternate pane
off 0 (TODO)TODO
N = 1049: alternate pane off 1
(TODO)TODO
N = 2004: Mode clear
(BRACKETPASTE)
N = other: ignored

(ǇǕǅ) [ {text} m SGR see section 1.1
(ǇǕǅ) [ {N} n DSR if N is 5, reply <ESC> [ 0 n if

N is 6, reply <ESC> [ ROW ;
COL R other N ignored

(no o)
(no p)
(ǇǕǅ) [ (Ǖǒǅ) <?> q DECSCUSR TODO
(ǇǕǅ) [ {N} ; {M} r DECSTBM scroll region N to M (M

defaults to screen height)
(ǇǕǅ) [ s SCP Save cursor position
(no t)
(ǇǕǅ) [ u RCP Restore cursor position
(no v-z)

1.1 SGR Codes (color and other attributes)
The SGR codes can be given in any order but apply in the order given. tmux
supports up to 16 codes specified in a single CSI sequence. Each code is sepa-
rated by a semicolon as is normal convention.

An example: (ǇǕǅ) [ 3 ; 3 7 m would set italic, foreground color 7,
and would leave other settings alone (e.g. if it was bold, it is still bold, the

5



Top terminal is xterm
(XTerm(297))
bottom terminal is urxvt
(rxvt-unicode (urxvt) v9.19 -
released: 2013-10-27)

Figure 1: Comparison of display of italic attribute.

background color is whatever it was, etc.)
Note: As with other features interpreted by tmux, the actual display seen

by the user will depend on the capabilities of the terminal emulator which is
running the tmux client. For example, a terminal which doesn’t understand
italics will not show italic text, even though tmux knows it should be italic. For
several of these (italics being a good example), tmux will use the terminfo for
your terminal emulator and do what that says, which can result in italic text
being displayed as reverse text, for example.

Table 6: SGR Codes

Code Meaning
 Reset all to default (except alt-charset, see sec-

tion 2)
1 set ATTR_Bright (e.g. ”bold”)
2 set ATTR_Dim
3 set ATTR_Italics
4 set ATTR_Underscore (i.e. ”underline”)
5 set ATTR_Blink
6 (ignored)
7 set ATTR_Reverse
8 set ATTR_Hidden
9 (ignored)
1 Same as 0.

11—21 (ignored)
22 Unset Bright and unset Dim
23 Unset Italic
24 Unset Underscore
25 Unset Blink

6



26 (ignored)
27 Unset Reverse

28—29 (ignored)
3—37 Set foreground to N-30, non-256color mode

38 foreground 256 color spec. See section 1.2
39 Set foreground color to 8, non-256color mode

(terminal default)
4—47 Set background to N-40, non-256color mode

48 background 256 color spec. See section 1.2
49 Set background color to 8, non-256color mode

5—89 (ignored)
9—97 Set foreground color to N, non-256color mode

(bright ANSI color)
98—99 (ignored)

1—17 Set background color to N-10, non-256color
mode (bright ANSI color)

(others) (ignored)

1.2 256 Color specification
tmux handles 256 color specifications of the form 5 ; {color}. If a value other
than 5 is received first, it is ignored and the next parameter is processed as a
regular SGR value.

If the value after the 5 is missing (indicating default value), the color is
chosen as color 8 in non-256 color mode (i.e. terminal default color).

Otherwise, {color} is a value between 0 and 255.
Colors from 0 to 7 correspond to non-256 colors 0 to 7 (black, red, green,

yellow, blue, magenta, cyan, white).
Colors from 8 to 15 correspond to high-intensity non-256 colors 0 to 7 (either

90-97, or possibly 0 to 7 with BRIGHT attribute, depending on client terminal)
Colors 16 to 231 are colorwheel colors. Each of red, green, and blue colors

get a number from 0 to 5 (0 being no intensity, 5 being full intensity). To go
from color to code, use 16 + (r ∗ 36) + (g ∗ 6) + b. To extract the color value
from the code, use r =

⌊
c
36

⌋
, g =

⌊
cmod36

6

⌋
, and b = cmod6

2 Internal representation
This section contains some information about how tmux keeps track of things
internally, which may be helpful in understanding how SGR codes affect things.

Every character on screen (and in history) has an 8-bit attribute bitmask,
an 8-bit flag bitmask, an 8-bit foreground color, an 8-bit background color, 8-
bit state (for tracking unicode info), and then unicode-width character data (9
bytes).

The attributes mask uses all 8 bit positions, and stores Bright, Dim, Under-
score, Blink, Reverse, Hidden, Italics and Alt-Charset attributes.

7



Only 3 of the 8 flags are defined: Foreground is 256-color mode, Background
is 256-color mode, and Padding.

Note that although Alt-Charset is stored with the attributes, it is not man-
aged by SCI SGR. SGR 0 resets only the attributes managed by SGR.

8


	CSI Sequences
	SGR Codes (color and other attributes)
	256 Color specification

	Internal representation

